School Code: 10908

CBSE Affiliation No.: 1730578

BIAGIT PUBLIC SR. SEC. SCHOOL

PHYSICS ACTIVITY 2020-21 CLASS-XII

ADDRESS

CAMPUS: N.H. 12, JHALAWAR ROAD, ALANIYA, KOTA-325003, PH:0744-2832113, 9649991123

Email: bpssschool@gmail.com

Aim:

To assemble a household circuit, comprising three bulbs, three (on/off) switches, a fuse and power source.

APPARATUS

Three bulbs, three (on/off) switches, flexible connecting wire (red and black), fuse and fuse wire, two pin plug, electric board.

Circuit Diagram

Observation: Make the switching on one by one then put them off one by one. Three for the circuit diagram is ok.

list count of ammeter =
$$\frac{\text{Range}}{\text{No. of Div.}} = \frac{3}{60} = 0.05 \text{amp}$$

Total power consumption P at any time. P = VI

Bulb B,
$$P_1 = VI_1 = 220 \times 4 \times .05 = 220 \times 0.20 = 44 \text{w}$$

Bulb B₂
$$P_2 = VI_2 = 220 \times 5 \times .05 = 220 \times 0.25 = 55 w$$

Bulb B₃
$$P_3 = VI_2 = 220 \times 9 \times .05 = 220 \times 0.45 = 99w$$

 $P_3 = P_1 + P_2 + P_3 = 44 + 55 + 99 = 198 w$

Result:

The bulbs glow when the switches is made on. Its stops glowing when the switch is put off.

BHAGAT PUBLIC SR. SEC. SCHOOL ALANIYA, KOTA (RAJ.)

Aim:

To assemable the components of a given electrical circuit. (Ohm's law)

APPARATUS

Voltmeter, Ammeter, Battery Rheostate, Key Unknown resistance, Connecting wire.

Circuit Diagram

B = Battery

A = Ammeter

V = Voltmeter

R = Resistance Wire

K = Key

Rh = Rheostate

Procedure:

- (i) Connect the items as shown in Fig.
- (ii) For measuring current, ammeter should be connected in series with components.
- (iii) For measuring potential drop, volumeter should be connected in parrallel with the resistance coil or wire.

Assembly of all the components in electric circuit is complate.

BHAGAT PUBLIC SR. SEC. SCHOOL ALANIYA, KOTA (RAJ.)

Aim:

To study the variation in potential drop with length of a wire for a steady current. Apparatus

Meter Bridge or Potentiometer, Battery, Rhostat, Key, Voltmeter, Ammeter, Jokey and connecting wire.

Circuit Diagram

Observation:

Least count of voltmeter
$$V = \frac{Total \, Range}{Total \, No. \, of \, Division} = \frac{1.5}{60} = 0.25 \, \text{volt}$$

Observation Table:

S.N.	Length of resistance wire (cm)	Voltmeter reading V = n x L.C.	X = / V/Cm
1	100 cm	4 x 0.025 = 0.1	0.001
2	200 cm	$8 \times 0.025 = 0.2$	0.001
3	400 cm	16 x 0.025 = 0.4	0.001

Calculation: Potential drop $x = \frac{v}{\ell}$ (w/cm)

1.
$$x_1 = \frac{v}{\ell} = \frac{0.1}{100} = 0.001 \text{ v/cm}$$

2.
$$x = \frac{v}{\ell} = \frac{0.2}{200} = 0.001 \text{ v/cm}$$

3.
$$x = \frac{v}{\ell} = \frac{0.4}{400} = 0.001 \text{ v/cm}$$

Result: The potential difference is directly proportional to length a wire when steady current passing though it.

$$V \propto \ell$$

And $\frac{V}{I}$ = constant

Aim :

To study the effect of intensity of light (by varying distance) on L.D.R. (light dependent resistor)

Apparatus

An L.D.R., a multimeter, a source of intense light and a convex lens.

Diagram

Symbol of LDR

Theory:

A light dependent resistor is made up of cadmium sulphide whose resistance depends on the intensity of light incident on it. A good quality LDR shown a variation of resistance from 10M in complete darkness to about 0.1 k in the day light. The symbol of an LDR is shown in Figure.

Procedure

- (i) Turn the select switch and set it on R for the measurement of resistance.
- (ii) Plug the metalic ends of black probe in terminal market common in multimeter and that of red in terminal marked as P (or +). Short the other metalic ends and adjust the 'R adjust' to get full scale deflection reading at zero ohm in the meter.
- (iii) Now touch the metalic probes to the two metal ends of the LDR Figure and read the value of resistance when -
 - (a) The source is kept at a distance of 2cm, fixing the source of light in a stand and keeping the L.D.R. vertically below it.

BHAGAT PUBLIC SR. SEC. SCHOOL ALANIYA, KOTA (RAJ.)

Aim:

To study the effect of intensity of light (by varying distance) on L.D.R. (light dependent resistor)

Apparatus

An L.D.R., a multimeter, a source of intense light and a convex lens.

Diagram

Theory:

A light dependent resistor is made up of cadmium sulphide whose resistance depends on the intensity of light incident on it. A good quality LDR shown a variation of resistance from 10M in complete darkness to about 0.1 k in the day light. The symbol of an LDR is shown in Figure.

Procedure

- (i) Turn the select switch and set it on R for the measurement of resistance.
- (ii) Plug the metalic ends of black probe in terminal market common in multimeter and that of red in terminal marked as P (or +). Short the other metalic ends and adjust the 'R adjust' to get full scale deflection reading at zero ohm in the meter.
- (iii) Now touch the metalic probes to the two metal ends of the LDR Figure and read the value of resistance when -
 - (a) The source is kept at a distance of 2cm, fixing the source of light in a stand and keeping the L.D.R. vertically below it.

- (b) Moving the source to 4 cm distance from the L.l).R. and
- (c) Moving the source to 6; 8 and 10 cm distances from L.D.R. and repeating observations three more times.
- (d) Record your observations in the table given below:

Observations Table: Effect. of distance of source on Resistance of L.D.R

No. of Obs.	istance of Source from L.D.R. (cm)	Resistance of L.D.R. (Ohm)
.1	150 cm	410 Ω
2	30 cm	750 Ω
3	45 cm	110 Ω

Conclusion:

As the distance of the source increases, the resistance of L.D.R. also increases, showing that intensity decreases with increase of distance.

Aim:

To identity a diode, An LED, transistor, IC, Resistor and Capacitor from mixed collection of such items.

Apparatus

Multimeter, Battery, Above mixed collection of items.

Circuit Diagram:

Observation:

Least count of Voltmeter $V = \frac{Total Range}{Total No. of Division}$

Observation Table:

S.No.	Observation	Legs	
1	Both direction current flow (same resistance)	Two	Resistor
2	Initially high but decays to zero	Two	Capacitor
3	Unidirectional current flow, emit no light	Two	Diode .
4	Unidirectional current flow, emit light	Two	LED
5	More than 3 terminals	Mou 3	I.C.
6	Three Terminals	Three	Transistor (PNP, NPN)

No. of Obs.	Number of Legs	Device
-1	More than 3	IC
2	Three	Transistor
3	Two	Capacitor, Diode or Resistor
No. of Obs.	Number of Legs	Device
1	Unidirectional emits no light	Diode
2 /	Unidirectional emits light	LED
3/_	Both directions (sleady)	Resistor
4	Initialy high but decays to zero	Capacitor

Result:

Identify the given component of mixture.

Aim:

To observe refraction and lateral deviation of a beam of light incident obliquety on a glass slab.

Apparatus

Glas slab, Drawing board, white paper steet, drawing pin, office and protractor.

Ray Diagram:

Theory:

When a ray of light becomes incident on a parallel faced glass slab, it emerges from it in same direction as the incident ray. It only surfers a lateral displacement proportional to the slab thinkness (+).

The laternal displacement it given by

Observation Table :

S,N.	Angle of incidence (i)	Angle of emergent (e)	Lateral displacement (d) = cm
1	40 degree	40 degree	1.8 cm

The ray of light emerging from a glass slab is parallel to the incident light and its laterally displaced.

d = 1.8 cm