School Code: 10908

CBSE Affiliation No.: 1730578

BIAGIT PUBLIC SR. SEC. SCHOOL ALANDA, KOTA

CHEMISTRY PRACTICAL

MAJOR EXPERIMENT 2020-21 CLASS - XII

CAMPUS: N.H. 12, JHALAWAR ROAD, ALANIYA, KOTA-325003, PH:0744-2832113, 9649991123

Email: bpssschool@gmail.com

AIM:- To prepare 250 ml of M/20 standard solution of F.A.S. Using this solution find out the molarity and strength of the given KMnO₄ solution.

Theory:- KMnO₄ oxidises fe^{**} ions into fe^{***} ions in acidic medium in cold and itself reduced to colourless Mn^{**} ions

 $2 \text{ KMnO}_4 + 10 \text{ Fe SO}_4 (\text{NH}_4)_2 \text{ SO}_4 \text{ 6H}_2\text{O} + 8\text{H}_2\text{SO}_4 \rightarrow \text{K}_2\text{SO}_4 + 2\text{MnSO}_4 + 5 \text{ Fe}_2(\text{SO}_4)_3 + 10 (\text{NH}_4)_2 \text{ SO}_4 + 68 \text{ H}_2\text{O}_4 + 6$

 $MnO_4^- + 5 fe^{++} + 8 H^+ \rightarrow Mn^{++} + 5 fe^{+++} + 4 H_2 O$ Molecular Mass of KMnO₄ = 158 Molecular Mass of F.A.S. = 392 Mass of required FAS for preparing 250 ml of

M/20 solution =
$$\frac{392}{20} \times \frac{250}{1000} = 4.9 \text{ gm}$$

Chemical balance, weight box, watch glass, measuring flask, funnel, burette, pipette, conical flask, tile, Apparatus: -

burette stand etc.

F.A.S Crystals (Mohr's Salt), Dilute H₂SO₄, Distilled H₂O, KMnO₄ solution. Materials-

KMnO₄ solution act as a self indicator. Indicator -

colourless to Permanent pink End point -

Observation – (i) Mass of watch glass (a) = 18.6192 gm

(ii) Mass of mohr's salt required (b) = 4.9 gm = 23.5192 gm

(iii) Mass of (a) + (b)

(iv) Volume of mohr's salt solution prepared = 250 ml

(v) Molarity of mohr's salt solution = M/20

Observation table -

able –	Volume of	Re	ading of KMnO ₄	solution	Concordant
S.N.	F.A.S. Solution(v ₁ ml)	Initial (a) (ml)	final (b) (ml)	Used (b-a) (ml)	volume of KMnO ₄ (V ₂ ml)
1	20 ml	0.0	19.8	19.8 ml	-4.9
2	20 ml	0.0	19.6	19.6 ml	19.6 ml
3 -	20 ml	0.0	19.6	19.6 ml	

Calculations- (A) Molarity of KMnO₄ solution (M_2) = ?.

Using formula

$$M_1V_1 = 5 M_2V_2$$

$$M_2 = \frac{M_1 \dot{V_1}}{5 \times V_2} = \frac{1}{20} \times \frac{20}{5 \times 19.6}$$

$$M_1 = M/20$$

$$V_1 = 20 \text{ MI}$$

 $M_2 = ?$

$$M_2 = 0.0102 M$$

$$V_2 = 19.6 \text{ ml}$$

(due to 2 moles of kMnO₄ reacts with 10 moles of FAS in overall balance equation)

- (B) Strength of $KMnO_4$ Solution in gm \lit = ?
 - = molarity (M2) × molecular mass
 - $= 0.0102 \times 158$
 - = 1.6116 gm /lit
- Result (1) Molarity of the given KMnO₄ solution = 0.0102 M
 - (2) Strength of the given $KMnO_4$ solution = 1.6116 gm/lit.

Precaution

- (i) All the volumetric apparatus should be washed well before use.
- (ii) Rinse burette with the solution of KMnO₄ and pipette with the solution of FAS. And wash the titration flash with distilled H₂O after every titration
- (iii) Always read the upper meniscus in case of coloured solutions.
- (iv) Always use freshly prepared KMnO₄ as it decomposed on keeping.
- (v) Excess of dilute H₂SO₄ should be add in FAS.

AIM:- To prepare 250 ml of M/30 standard solution of F.A.S. Using this solution find out the molarity and strength of the given KMnO₄ solution.

Theory:- KMnO₄ oxidises fe" ions into fe" ions in acidic medium in cold and itself reduced to colourless Mn" ions

2 KMnO₄ + 10 Fe SO₄ (NH₄)₂ SO₄ 6H₂O + 8H₂SO₄ \rightarrow K₂SO₄+ 2MnSO₄ + 5 Fe₂(SO₄)₃ + 10 (NH₄)₂ SO₄+ 68 H₂O

 $MnO_4 + 5 fe^{++} + 8 H^{+} \rightarrow Mn^{++} + 5 fe^{+++} + 4 H_2 O$ Molecular Mass of KMnO₄ = 158 Molecular Mass of F.A.S. = 392 Mass of required FAS for preparing 250 ml of

M/30 solution =
$$\frac{392}{30} \times \frac{250}{1000} = 3.26 \text{ gm}$$

Apparatus: - Chemical balance, weight box, watch glass, measuring flask, funnel, burette, pipette, conical flask, tile, burette stand etc.

F.A.S. Crystals (Mohr's Salt). Dilute H-SO., Distilled H-O., KMnO., solution.

Indicator - KMnO₄ solution act as a self indicator.

End point - colourless to Permanent pink

- Observation (i) Mass of watch glass (a) = 18.5974 gm
 - (ii) Mass of mohr's salt required (b) = 3.26 gm
 - (iii) Mass of (a) + (b)
- = 21.8574 gm
- (iv) Volume of mohr's salt solution prepared = 250 ml
- (v) Molarity of mohr's salt solution = M/30

Observation table -

	Volume of	Reading of KMnO ₄ solution			Concordant
S.N.	F.A.S. Solution(v ₁ ml)	Initial (a) (ml)	final (b) (ml)	Used (b-a) (ml)	volume of KMnO ₄ (V ₂ ml)
1	20 ml	0.0	19.9	19.9 ml	
2	20 ml	0.0	19.7	19.7 ml	19.7 ml
3	20 ml	0.0	19.7	19.7 ml	

Calculations- (A) Molarity of $KMnO_4$ solution $(M_2) = ?$.

Using formula

$$M_1v_1 = 5 M_2V_2$$

$$M_2 = \frac{M_1 V_1}{5 \times V_2} = \frac{1}{30} \times \frac{20}{5 \times 19.7}$$

$$M_1 = M/30$$

$$V_1 = 20 \text{ MI}$$

$$M_2 = 0.0067 M$$

$$M_2 = ?$$

 $V_2 = 19.7 \text{ ml}$

(due to 2 moles of KMnO₄ reacts with 10 moles of FAS in overall balance equation)

(B) Strength of KMnO₄ Solution in gm \lit = ?

= molarity (M₂) × molecular mass

 $= 0.0067 \times 158$

= 1.0586 gm /lit

Result - (1) Molarity of the given KMnO₄ solution = 0.0067 M

(2) Strength of the given KMnO₄ solution = 1.0586 gm/lit.

Precaution

(i) li the volumetric apparatus should be washed well before use.

(ii) Rinse burette with the solution of KMnO₄ and pipette with the solution of FAS. And wash the titration flash with distilled H₂O after every titration

(iii) Always read the upper meniscus in case of coloured solutions.

(iv) Always use freshly prepared KMnO₄ as it decomposed on keeping.

(v) Excess of dilute H₂SO₄ should be add in FAS.

AIM:-

To prepare 250 ml of M/20 standard solution of Oxalic acid. Using this solution, find out the Molarity and strength of the given KMnO₄ solution.

Theory – KMnO₄ Oxidises Oxalic acid into CO₂ in acidic medium at a temperature around 60° c and itself get reduced to colourless Mn" ions

2 KMnO₄ + 3 H₂ SO₄ + 5 (COOH)₂
$$\rightarrow$$
 K₂SO₄ + 2 MnSO₄ + 10 CO₂ + 8 H₂O

 $2 \text{ MnO}_4^- + 16 \text{H}^+ + 5 \text{ C}_2 \text{O}_4^{-2} \rightarrow 2 \text{ Mn}^{++} + 8 \text{ H}_2 \text{O} + 10 \text{ CO}_2$

Molecular mass of kMnO₄ = 158

Molecular mass of Oxalic acid = 126

Mass of required Oxalic acid for preparing 250 ml of

M/20 solution =
$$\frac{126}{20} \times \frac{250}{1000} = 1.575$$
 gm

Apparatus: - Chemical balance, weight box, watch glass, measuring flask, funnel, burette, pipette, conical flask, tile, burette stand etc.

Materials- Hydrated oxalic acid Crystals (Mohr's Salt), dilute H₂SO₄, distilled H₂Ō, KiVinO₄ solution.

Indicator - KMnO₄ solution act as a self indicator.

End point - Colourless to Permanent pink

- Observation (i) Mass of watch glass (a) =18.6202. gm
 - (ii) Mass of required oxalic acid (b) = 1.575 gm
 - (iii) Mass of (a) + (b)
- = 20.1952 gm
- (iv) Volume of oxalic acid solution prepared = 250 ml
- (v) Molarity of oxalic acid solution = M/20

Observation table -

ervation table – Volume of		Reading of KMnO₄ solution			Concordant
S.N.	oxalic acid Solution(v ₁ ml)	Initial (a) (ml)	final (b) (ml)	Used (b-a) (ml)	volume of KMnO ₄ (V ₂ ml)
1	20 ml	0.0	19.7	19.7 ml	
2	20 ml	0.0	19.5	19.5 ml	19.5 ml
3	20 ml	0.0	19.5	19.5 ml	

Ćalculations- (A) Molarity of KMnO₄ solution (M₂) =?

Using formula

2M₁v₁=5 M₂V₂

$$M_2 = \frac{2M_1V_1}{5V_2}$$

$$M_2 = \frac{2}{20} \times \frac{20}{57195}$$

$$M_1 = M/20$$

$$V_1 = 20 \text{ m}$$

$$M_2 = ?$$

$$V_2 = 19.5 \, \text{ml}$$

XII CBSE : Chemistry Practical (due to 2 mole of KMnO₄ reacts with 5 moles of oxalic acid in overall balance equation)

- (B) Strength of KMnO₄ Solution in gm/lit
 - = Molarity (M₂) × molecular mass.
 - $= 0.0205 \times 158$
 - = 3.2390 gm/lit
- The Molarity of the given KMnO₄ solution = 0.0205 M Result (A)
 - The Strength of the given KMnO₄ solution = 3.2390 gm/lit (B)

' Precautions

- All the volumetric apparatus should be washed well before use.
- Rinse burette with the solution of oxalic acid and pipette with the solution of oxalic acid and wash the (i) (ii) titration flash with distilled H₂O after every titration
- Always read the upper meniscus in case of coloured solution. (iii)
- Always use freshly prepared KMnO₄ as it decomposes on keeping. (iv)
- Dilute H₂SO₄ should be add in oxalic acid solution.
- Heat the conical flask should be slowly on a wire gauze unit the moisture appears on the neck of the flas (v) (vi) the temperature of the solution should be between $60^{\circ} - 70^{\circ}$ c

Correctly?

AIM:- To prepare 250 ml of M/30 standard solution of Oxalic acid.

Using this solution, find out the Molarity and strength of the given KMnO₄ solution.

Theory – KMnO₄ Oxidises Oxalic acid into CO₂ in acidic medium at a temperature around 60° c and itself get reduced to colourless Mn⁺⁺ ions

2 KMnO₄ + 3 H₂ SO₄ +5 (COOH)₂
$$\rightarrow$$
 K₂SO₄ + 2 MnSO₄ + 10 CO₂ + 8 H₂O

OR

 $2 \text{ MnO}_4^- + 16 \text{H}^+ + 5 \text{ C}_2 \text{O}_4^{-2} \rightarrow 2 \text{ Mn}^{++} + 8 \text{ H}_2 \text{O} + 10 \text{ CO}_2$

Molecular mass of kMnO₄ = 158

Molecular mass of Oxalic acid = 126

Mass of required Oxalic acid for preparing 250 ml of

M/30 solution = $\frac{126}{30} \times \frac{250}{1000} = 1.05$ gm

Apparatus: - Chemical balance, weight box, watch glass, measuring flask, funnel, burette, pipette, conical flask, tile, burette stand etc.

Materials- Hydrated oxalic acid Crystals (Mohr's Salt), dilute H₂SO₄, distilled H₂O, KMnO₄ solution.

Indicator - KMnO₄ solution act as a self indicator.

End point - Colourless to Permanent pink

Observation – (i) Mass of watch glass (a) = 18.6192. gm

(ii) Mass of required oxalic acid (b) = 1.05 gm

(iii) Mass of (a) + (b)

= 19.6692 gm

(iv) Volume of oxalic acid solution prepared = 250 ml

(v) Molarity of oxalic acid solution = M/30

Observation table -

	Volume of	Reading of KMnO₄ solution ·			Concordant
5.N.	oxalic acid Solution(v ₁ ml)	Initial (a) (ml)	final (b) (ml)	Used (b-a) (ml)	volume of KMnO ₄ (V ₂ ml)
1	20 ml	0.0	19.9	19.9 ml	
2	20 ml	0.0	19.7	19.7 ml	./ 19.7 ml
3	20 ml	0.0	19.7	19.7 ml	

Calculations- (A) Molarity of $KMnO_4$ solution (M₂) = ?

Using formula

$$2M_1V_1=5M_2V_2$$

$$M_2 = \frac{2M_1V_1}{5V_2}$$

$$M_2 = \frac{2}{30} \times \frac{20}{5 \times 19.7}$$

$$M_1 = M/30$$

$$V_1 = 20 \, \text{ml}$$

$$M_2 = ?$$

$$V_2 = 19.7 \text{ ml}$$

 $M_2 = 0.0135 M$

(due to 2 mole of Kmno₄ reacts with 5 moles of oxalic acid in overall balance equation)

(B) Strength of KMnO₄ Solution in gm/lit

= Molarity (M₂) × molecular mass.

 $= 0.0135 \times 158$

= 2.1330 gm/lit

The Molarity of the given KMnO₄ solution = 0.0135 M Result (A)

The Strength of the given KMnO₄ solution = 2.1330 gm/lit (B)

Precautions

- All the volumetric apparatus should be washed well before use.
- Rinse burette with the solution of oxalic acid and pipette with the solution of oxalic acid and wash the (i) (ii) titration flash with distilled H2O after every titration
- Always read the upper meniscus in case of coloured solution. (iii)
- Always use freshly prepared KMnO₄ as it decomposes on keeping. (iv)
- Dilute H₂SO₄ should be add in oxalic acid solution.
- Heat the conical flask should be slowly on a wire gauze unit the moisture appears on the neck of the flas (v) (vi) the temperature of the solution should be between $60^{0} - 70^{0}$ c

Exercise - Identify the functional group present in the given organic compound.

Physical Properties -

- 1. Physical State Liquid
- 2. Colour Colour less
- 3. Odour Smell like vinegar
- Solubility in water Soluble in water.

S.N	Experiment	Observations	Inference
1	Nature of the compound-Put a crystal of the compound on moist blue litmus paper	Litimus paper turns red	Organic compound is acidic in nature may be -COOH or Ar-OH Functional group.

S.N	Experiment	Observations	Inference
2	Burning Test – Take some organic compound on copper wire and bring it in to the flame.	The compound burns with non- sooty blue flame	Compound is aliphatic
3	Detection of element (1) Lassaigne solution + NaOH + Fe SO ₄ (Freshly prepared)	Green ppt	
	(ii) Add few drops of dil. H ₂ SO ₄	Colour less solution is obtained	N-absent
4	Test for functional group	7840	
	Aqueous solution of compound + a pinch of NaHCO3	Brisk effervescence colourless odourless gas evolved	Ar-OH group absent- -COOH group in present.
5	Ester test Organic compound + 2-3 drops H ₂ SO ₄ +0.5 ml C ₂ H ₅ OH. Warm	Fruity smell	-COOH group present

Result -

Carboxylic acid [-CADH] group is present in the given organic compound.

Structural Formula

Exercise - Identify the functional group present in the given organic compound.

Physical Properties -

- Physical State Liquid
- 2. Colour Colour less
- 3. Odour Pleasant smell like that of spirit
- 4. Solubility in water Soluble in water.

S.N	Experiment	Observations	1.6
1	Nature of the compound-Put a		Inference
	drop of liquid on moist blue litmus paper and moist red litmus paper respectively	No reaction	Organic comp. is neutral.

S.N	Experiment	Observations	Inference
2	Burning Test – Burning a copper wire dipped in the given liquid into the flame.	The compound burns with non- sooty blue	Compound is aliphatic.
3	Detection of element-1. Lassaigne solution + NaOH + Fe SO ₄ (Freshly prepared)	Green ppt	
	(ii) Add few drops of all. H₂SO₄	Solution does not turns green or blue.	N-absent
4	Test for functional group		
	Sodium metal test-Organic liquid + Na piece	Brisk effervescence with the evaluation of H ₂ gas	-OH (alchoholic) group is present.
5	Ceric ammonium nitrate test A aqueous solution of the compound + ceric ammonium nitrate solution.	Solution turns red	-OH group is present.
6	Ester Test – Compound + solid CH ₃ COONa + few drops of cone. H ₂ SO ₄ and heat.	Fruity smell	-OH group is present.

'Result - The given organic compound has alchoholic (-OH) functional group in it.

Structural formula -

Exercise – Identify the functional group present in the given organic compound.

Physical Properties -

- Physical State Solid
- 2. Colour Light Pink
- 3. Odour Pheolic smell
- Solubility in water Soluble in water.

S.N	Experiment	Ohan II	
1		Observations	Inference
	Nature of the compound-Put a drop of liquid on moist blue litmus paper	Litmus paper turns red	The given comp. is acidic. May -COOH or Ar-OH group in it.

S.N	Experiment	Observations	Informer
2	Burning Test – Put a crystal of the compound on glass rod and bring it in to the flame	The compound burns with sooty flame	Inference Organic Compound is aromatic.
3	Detection of element-(1) Lassaigne solution + NaOH + Fe SO ₄ (Freshly prepared)	Green ppt	
	(ii) Add few drops of dil. H ₂ SO ₄	Solution does not turn green or blue.	N-absent
4	Test for functional group	S. F. C. T. T. T. C.	1
	FeCl ₃ test-Aqueous solution of the compound + neutral FeCl ₃ solution	Solution turns green	Phenolic (Ar-OH) group is present.
5	Libermann Nitroso Test (i) Compound + solid NaNO ₂ + dilute H ₂ SO ₄ (ii) Dilute the solution with H ₂ O (iii) Above red solution + NaOH solution	[Blue coloured solution is obtained.] [Solution becomes red] [The colour of the solution again becomes blue.]	Phenolic group is present.

Result -

Phenolic (Ar-OH) group is present in the given organic compound.

Structural Formula -

Exercise – Identify the functional group present in the given organic compound.

Physical Properties -

- 1. Physical State liquid
- Colour Colourless
- 3. Odour Pungent smell
- 4. Solubility in water Soluble in water.

	1	Observations	Inference
S.N	Experiment		Organic compound is
1	Nature of the compound-Put a drop of liquid on moist blue and red litmus paper separately	No action	neutral.

	Euperiment	Observations	Inference
5. N 2	Burning Test – Put a crystal of the compound on glass rod and bring it in to the flame	The compound burns with non-sooty blue flame	Organic Compound is aliphatic.
3	Detection of element 1. Lassaigne solution + NaOH + Fe SO ₄ (Freshly	Green ppt	·
	prepared) (ii) Add few drops of dil. H ₂ SO ₄	Solution does not turn green or blue.	N-absent
4	Test for functional group	42.53a	Carbonyl (>C=O) group
(i)	Compound + 2,4- dinitrophenyl hydrazine, shake	Yellow ppt is formed	is present may be –CHC or > C=O group.
(ii)	Compound + sod.	No reaction	> C=O group is absent.
(iii)	Nitroprusside+NaoH Compound + Tollen's reagent warm in a water bath.	Silver mirror is formed.	-CHO group is present.
(iv)	s = 1 th = de entution	Red ppt is formed.	-CHO present.
(v)	Schiffs reagent and the given organic liquid	Red colouration	Aldehyde group (-CHO) is present.

Result - Aldehyde group (-CHO) is present in the given organic compound.

Structural Formula -
$$\begin{bmatrix} -c - H \\ 0 \end{bmatrix}$$

 $\label{eq:exercise} \textbf{Exercise} - \textbf{Identify the functional group } \textbf{ in the given organic compound.}$

Physical Properties -

- 1. Physical State liquid
- 2. Colour Colourless
- Odour Smell like nail polish remover
- 4. Solubility in water Insoluble in water.

S.N	Experiment	Observed	
1	Nature of the compound-Put a	Observations	Inference
	drop of given liquid on moist blue and red litmus paper separately	No action	Organic compound is neutral.

2	Burning Test – Put a crystal of the compound on glass rod and bring it in to the flame	The compound burns with non-sooty blue flame	Organic Compound is aliphatic.
3	Detection of element-1. Lassaigne solution + NaOH + Fe SO ₄ (Freshly prepared)	Green ppt	
	(ii) Add few drops of dil. H ₂ SO ₄	Solution does not turn green or blue.	N-absent
4	Test for functional group		
(i)	Compound + 2,4- dinitrophenyl hydrazine, shake	Yellow ppt is formed	Carbonyl (>C=O) group is present may be –CHO or > C=O group.
(ii)	Totten's Test Organic compound + Tollen reagent	No reaction	-CHO group absent.
(iii)	Nitroprusside test – Organic compound + sodium nitroprusside solution + NaOH	A wine red colouration.	> C=O group is present.
(iv)	m-dinitrobnezene test – Organic compound + powdered m- dimitrobenzene + dil. NaOH in excess, shake well.	A violet colour appears	(>C=O) ketonic group is present.

Result -

The given organic liquid has Ketonic (>C=O) functional group.

Structural Formula - $\left[\begin{array}{c} c = 0 \end{array} \right]$

Exercise - Identify the functional group in the given organic compound.

Physical Properties -

- 1. Physical State liquid
- 2. Colour Brownish red (Colourless when pure)
- Odour Pungent smell
- Solubility in water –Partly soluble in water.

S.N	Experiment	Observations	Information .
1	Nature of the compound-Put a drop of given liquid on moist blue and red litmus paper separately	Red litmus paper turns blue	The compound in basic in nature.

2	Burning Test – Bring a glass red dipped in the given liquid into the flame.	Compound burns with sooty flame	Given compound is aromatic
3	Detection of element Lassaigne solution + NaOH + Fe SO ₄ (Freshly prepared) add few drops of dil. ii25O ₄	Green ppt A blue colour appears	N- is present.
4	Test for functional group	7, orac colour appears	iv is present.
-(i)	Organic compound + few drops of conc. HCl + solid NaNO ₂ . Cool the solution in ice bath. Add alkaline B napthol is cold.	Orange red dye is formed.	Aromatic amino (Ar- NH ₂) group is present.

Result – Amino (-NH₂) group is present attached to aromatic ring i.e. Aromatic amine (Ar-NH₂) is present.

Structural Formula -

Exercise - Analyze the given mixture for one acid and one basic radical by dry and wet tests.

S.N	Experiment	Observations	Inference
1.	Test for acid Radicals. Mixture + dil. H ₂ SO ₄	No reaction	Dilute add group is absent.
2	Mixture + conc. H ₂ SO ₄ . Heat	Yellow brown fumes with pungent smell evolved	Conc. Acid group is present may be Br
3	Confirmatory test Silver Nitrate Test – Sodium Carbonate extract + dil HNO ₃ + AgNO ₃ solution.	Light yellow ppt is formed.	present that yet at
4	Add NH ₄ oH in excess into above ppt.	Yellow ppt is partly dissolve.	Br confirmed.
5	CCl ₄ layer test – Sodium carbonate extract + dil. HNO ₃ +CCl ₄ +Cl ₂ water drop by drop and shake	CCl ₄ layer turns yellowish orange.	Br confirmed.
	Test for basic Radical	56 TATE	
1	Mix + NaOH solution. Heat Confirmatory Test	Smell of NH,	Zero group is present may be NH ⁺ ₄
2	Bring a glass rod dipped in HCl near the mouth of the test tube.	White fumes of NH ₄ Cl formed	NH' confirmed.
3	Bring a piece of filter paper moistened with Nesslar's. Reagent near the mouth of the test tube.	Filter paper turns reddish brown	NH₄ confirmed
4	Bring a piece of filter paper moistened with CuSO ₄ solution near the mouth of the test tube.	Filter paper turns deep blue	NH ¹ ₄ confirmed

Result - The given mixture contains bromide (Br') acid radical and Ammonium (NH⁺4) as basic radical.

Exercise: Identify one acid and one basic radical in the given mixture.

T	EXPERIMENT	OBSERVATION	INFERENCE
S.N 1.	Tests for acid radicals Mixture + dil H ₂ SO ₄	Smell like vinegar is given out	Dilute acid group is present may be CH ₃ COO
2	Confirmatory Test Palm test – Take the mixture on palm, add it to solid H ₂ C ₂ O ₄ , 2H ₂ O and 2-3 Drops of water. Rub it and	Smell of vinegar	CH ₃ COO*confirmed
3	Feric Chloride test-Sodium carbonate extract + neutral FeCl ₃ solution	Solution turns deep red	CH ₃ COO confirmed
4	Easter test – Mixture + C ₂ H ₅ OH + Few drops and conc. H ₂ SO ₄ and heat.	A pleasant fruity smell.	CH ₃ COO confirmed
1	Test for Basic Radical Mixture + NaOH solution &	No smell of NH ₁	Zero group absent.
2	Heat. Original solution + dil. HCl	White ppt	I group present may be Pb ²⁺ , Ag ⁺ , Hg ₂ ²⁺
3	White ppt + water & boil	Ppt is soluble but reappear on cooling	May be Pb ²⁺
4	Divide the hot solution of the ppt into two parts.	Yellow part	Pb ²⁺ confirmed
(i) (ii)	To part I add KI solution To part II add K ₂ CrO ₄ Solution Dry Test: Charcoal Cavity Test mixture + Na ₂ CO ₃ +2-3 drops of water in charcoal cavity. Heat it in reducing flame.	Yellow part A soft shining metallic bead is formed. It leaves mark on paper.	Pb ²⁺ confirmed Pb ²⁺ confirmed

Result: - Acetate (CH₃COO) and lead (Pb²⁺) are present in the given mixture as acid and basic radicals.

Exercise: Analyze the given salt for one acid and one basic radical by dry and wet tests.

S.N	EXPERIMENT	OBSERVATION	INFERENCE
1	Tests for acid radicals Salt + dil H ₂ SO ₄ and heat	No reaction	Dilute acid group is absent.
2	Salt + conc. H ₂ SO ₄ and heat	No reaction	Conc. Acid group is absent.
3	Sodium carbonate extract + dill HCI+BaCl ₂ solution	White ppt is obtained	General groups is present may be SO ₄ ² .
4	Confirmatory test – Divide the ppt in two parts. (i) To part I add conc. HCl & Heat. (ii) To part II add conc. HNO, and heat.	Ppt remains insoluble. Ppt remains insoluble.	SO ² confirmed s
	Test for Basic Radical	唐 始	
1.	Salt + NaOH solution & Heat.	No smell of NH ₃	Zero group absent.
2	Original solution + dil. HCI	No ppt is obtained.	i group absem.
3	Pass H ₂ S gas into the above solution.	Black ppt is obtained	Il group present may be Pb ² or Cu ²
4	Dissolve the ppt in 50% HNO3	Black ppt is dissolves	May be Pb2+ or Cu2+
5	Divide the solution in two parts. (i) Part I + C ₂ H ₅ OH + dil. H ₂ SO ₉ (ii) Part II + NH ₄ OH in excess.	No ppt Deep the colouration	Pb ²⁺ absent may be Cu ²⁺ Cu ²⁺ confirmed
6	Deep blue solution + CH ₁ COOH till blue colour disappear. Now add K ₄ [Fe(CN) ₆] solution.	Chocolate brown ppt is formed.	Cu2+ confirmed
7.	Dry test - Perform charcoal cavity test.	Red bead is formed.	Cu² confirmed

Result: - In the given salt sulphate (SO24-) and copper (Cu2+) radicals are present.

Exercise: Analyze the given salt for one acid and one basic radical by dry and wet tests.

S.N	EXPERIMENT	OBSERVATION	INFERENCE
1	Tests for acid radicals Mixture + dil H ₂ SO ₄ and heat	No reaction	Dilute acid group is absent.
2	Salt + conc. H₂SO₄ and heat	No reaction	Conc. Acid group is absent.
3	Sodium carbonate extract + dill HCl+BaCl ₂ solution	White ppt is obtained	General groups is present may be SO ₄ ²
4	Confirmatory test – Divide the ppt in two parts. (i) To part I add conc. HCl & Heat. (ii) To part II add conc. HNO ₃ and heat.	Ppt remains insoluble. Ppt remains insoluble.	SO ² ₄ confirmed SO ² ₄ confirmed.
	Test for Basic Radical	200	
1.	Mixture + NaOH solution & Heat.	No smell of NH ₃	Zero group absent.
2	Original solution + dil. HCI	No ppt	I group absent.
3	Pass H ₂ S gas into the above solution.	No ppt.	Il group absent.
4	Boil the above solution to remove H ₂ S gas completely. Test it by a piece of filter paper moistened with (CH ₃ COO) ₂ Pb solution.	Filter paper does not turn black.	H ₂ S is removed completely.
5	Now boil the above solution with 2 drops of conc. HNO ₃ +add solid NH ₄ Cl and then NH ₄ OH in excess after cooling.	Reddish brown ppt is obtained.	III group present may be
6	Confirmatory Test Dissolved the ppt in dil.HCl and divide it in two parts. (i) Part I + K ₄ [F _e (CN) ₆] solution. (ii) Part II + KCNS solution Dry test borex bead test Perform borax bead test.	Deep blue colouration. Blood red colouration. Yellow bead.	Fe ³⁺ confirmed. Fe ³⁺ confirmed. Fe ³⁺ confirmed.

Result: - The given mixture contains sulphate (SO24) and iron (Fe3+) radicals.

Exercise: Analyze the given mixture for one acid and one basic radical by dry and wet tests.

S.N	EXPERIMENT	OBSERVATION	INFERENCE "
1	Tests for acid radicals Mixture + dil H ₂ SO ₄ and heat	No reaction	Dilute acid group is absent.
2	Mixture+ conc. H ₂ SO ₄ and heat	Brown coloured gas with pungent smell is given out.	Conc. Acid group is present. May be NO ₃
3	Add some copper turning to the test tube.	Brown gas becomes dense.	Br- absent. May be NO.3
4	Confirmatory test – Neutralize Sodium carbonate extract with CH ₃ COOH. Add to it freshly prepared FeSO ₄ . Solution and then conc. H ₂ SO ₄ by the side of the test tube.	A brown ring is formed at the junction of two liquid due to the formation of FeSO ₄ NO	NO ₃ confirmed.
	Test for Basic Radical	\$1 Ø	
l.	Mixture + NaOH solution & Heat.	No smell of ammonia	Zero group absent.
2	Original solution + dil. HCl	No ppt .	I group absent.
3	Pass H ₂ S gas into the above solution.	No ppt.	II group absent.
4	Boil the above solution to remove H ₂ S gas completely. Test it by a piece of filter paper moistened with (CH ₃ COO) ₂ Pb solution.	Filter paper does not turn black.	H ₂ S is removed completely.
5	Now boil the above solution with 2 drops of conc. HNO ₃ add solid NH ₄ Cl and then NH ₄ OH in excess after cooling.	White gelatinous ppt is obtained.	III group present may be
6	Confirmatory Test Dissolved the white ppt in dil.HCl and divide it in three		
	parts (i) Part I + solid NH ₄ Cl heat. (ii) Part II NaOH solution	White ppt reappears. White ppt, which is soluble in excess if NaOH.	Al ³ confirmed. Al ³ confirmed.
•	(iii) Lake test. Part III + 2 drops of blue litmus and then add NH ₄ OH drop by	Blue ppt floats on the	Al ³⁻ confirmed.
	drop. Dry Test-Charcoal cavity cobal nitrate test.	Blue mass is obtained.	Al ³⁻ confirmed.

Result: - Nitrate (NO3) and Aluminium (Al3+) are present in the given mixture.

Experiment No. 16

Exercise: Identify one acid and one basic radical from the given mixture by dry and wet tests.

S.N	EXPERIMENT	OBSERVATION	INFERENCE
1	Tests for acid radicals Mixture + dil H ₂ SO ₄ +Heat	Colourless gas with smell of vinegar is evolved	Dilute acid group is present may be CH ₃ COO
2	Confirmatory test – Palm test: Mixture + solid oxalic acid on palm then add 2- 3 drops of water. Rub it and smell.	Smell of vinegar	CH ₃ COO
3	FeCl ₃ solution: Neutralize sodium carbonate extract with dil. HCl and add FeCl ₃ solution.	Dark red colouration	CH ₃ COO confirmed
4	Ester Test: Mixture + C ₂ H ₅ OH + few drops of conc. H ₂ SO ₄ . Heat	Pleasant fruity smell of ester formed	CH ₃ COO confirmed
	Test for Basic Radical	section 20 N	
1.	Mixture + NaOH solution & Heat.	No smell of ammonia	Zero group absent.
2	Original solution + dil HCI	No not .	I group absent.
3	Pass H ₂ S gas into the above solution.	No ppt.	Il group absent.
4	Boil the above solution to remove H ₂ S gas completely. Test it by a piece of filter paper moistened with (CH ₃ COO) ₂ Pb solution.	Filter paper does not turn black.	H ₂ S is removed completely.
5	Now boil the above solution with 2 drops of conc. HNO ₃ add solid NH ₄ Cl and then NH ₄ OH in excess after cooling.	No ppt	III group absent.
6	Pass H ₂ S gas in the above solution.	A white ppt is obtained	IV group present may be Zn ²⁺
7	Dissolve the ppt in dil. HCl and devide the solution in two parts.		-
(i)	Part I + K4[Fe(CN) ₆] solution	Bluish white ppt is obtained	Zn ²⁺ confirmed
(ii)	Part II + NaOH solution drop by drop	White ppt is formed which is soluble in excess of NaOH	Zn ²⁺ confirmed
8	Dry test: Perform charcoal cavity test with cobalt nitrate.	Green residue is left.	Zn ² confirmed

Result: - The given mixture contains acetate (CH₃COO) and Zinc (Zn²⁺) in it.

Exercise: Analyse the given salt for one acid and one basic radical by dry and wet tests.

S.N	EXPERIMENT	OBSERVATION	INFERENCE
1	Tests for acid radicals		odato in tre mente de desar i entra i comito de 344
2	Salt + dil H ₂ SO ₄ and heat. Salt + conc. H ₂ SO ₄ & heat.	No reaction Colourless pungent	Dilute acid group is absent. Conc. Acid group is
	Bring a glass red dipped in NH ₄ OH near the mouth of the test tube.	White fumes formed.	present. May be Cl* Cl*confirmed.
3	Confirmatory test – Chromyl Chloride Test Salt + solid K ₂ Cr ₂ O ₇ + conc. H ₂ SO ₄ in a dry test tube and heat.		Cl~confirmed.
	Pass the red coloured gas in NaOH solution. To the vellow solution add CH ₃ COOH and (CH ₃ COO) ₂ pb	Solution boomes yellow. A yellow ppt is formed.	Cl*confirmed.
	solution.	A yellow ppt is formed.	Ci commined.
4	Silver Nitrate Test: Sodium Carbonate extract + dil. HNO ₃ 1 AgNO ₃ solution.	A white ppt is formed.	Cl~confirmed.
	Add excess of NH ₄ OH in the ppt.	The ppt is soluble.	Cl confirmed.
	Test for Basic Radical		
1.	Salt + NaOH solution & Heat.	No smell of ammonia.	Zero group absent.
2	Original solution + dil. HCl	No ppt .	I group absent.
3	Pass H ₂ S gas into the above solution.	No ppt.	II group absent.
4	Boil the above solution to remove H ₂ S gas completely. Test it by a piece of filter paper moistened with (CH ₃ COO) ₂ Pb.	Filter paper does not turn black.	H₂S is removed completely.
5	Now boil the above solution with 2 drops of conc. HNO ₃ add solid NH ₄ Cl and then NH ₄ OH in excess after cooling.	- 1	III group absent.
6	Pass H ₂ S gas in the above solution.	No ppt	IV group absent.
7	Boil off H ₂ S from the above solution and concentrate it. Now add excess of NH ₄ OH and saturated solution of (NH ₄) ₂ CO ₃ .	A white ppt is obtained.	V group present. May be Ba ²⁺ , Sr ²⁺ and Ca ^{2f}
8	Dissolve the white ppt in hot CH ₃ COOH and divide it in to three parts.	*	
(i)	To part I add K ₂ C _r O ₄ solution. Dry test – Perform flame test.	A yellow ppt is obtained Apple green flame.	Ba ²⁺ confirmed. Ba ²⁺ confirmed.

Result. The Given mixture contains chloridect and Barium Ba+2 radice

Exercise: Analyse the given salt for one acid and one basic radical by dry and wet tests.

S.N	EXPERIMENT	OBSERVATION	INFERENCE
1	Tests for acid radicals		Dilute acid group is
	Salt + dil H ₂ SO ₄ and heat.	No reaction	absent.
2	Salt + conc. H ₂ SO ₄ & heat.	Colourless pungent	Conc. Acid group is
	1	smelling gas evolved.	present.
	Bring a glass red dipped in	siliciting gas evolved.	May be Cl
	NH ₄ OH near the mouth of the	White fumes formed.	Chis confirmed.
	test tube.		Cr is commined.
	Confirmatory test -		,
3	Chromyl Chloride Test		
	Salt + solid $K_2Cr_2O_7$ + conc.	Dark red pungent	Cl confirmed.
	H ₂ SO ₄ in a dry test tube and	smelling gas is evolved.	Ci commune.
	heat.	smerring gas is everyed.	
	Pass the red coloured gas in	Solution boomes vellow.	
	NaOH solution.		
	To the yellow solution add	VIII. 10	
	CH ₃ COOH and (CH ₃ COO) ₂ pb	A yellow ppt is formed.	Cl*confirmed
	solution.	Y II	
4	Silver Nitrate Test : Sedium	A white ppt is formed	CYconfirmed
	Carbonate extract + dil. HNO3	**************************************	i
	+ AgNO ₃ solution.		
	Add excess of NH ₄ OH in the	The ppt is soluble.	Cl*confirmed.
	ppt.		
	Test for Basic Radical		
1	Salt + NaOH solution & Heat.	No smell of ammonia.	Zero group absent.
2	Original solution + dil. HCl	No ppt .	I group absent.
3	Pass H ₂ S gas into the above	No ppt.	Il group absent.
	solution.		
4	Boil the above solution to	Filter paper does not turn	H ₂ S is removed
	remove H ₂ S gas completely.	black.	completely.
	Test it by a piece of filter paper		
	moistened with (CH ₃ COO) ₂ Pb.		
5	Now boil the above solution	No ppt	III group absent.
	with 2 drops of conc. HNO3 add	1	
	solid NH ₄ Cl and then NH ₄ OH		
	in excess after cooling.		A
6	Pass H ₂ S gas in the above solution.	No ppt	IV group absent.
	Boil off H₂S from the above		
7	solution and concentrate it. Now	A white ppt is obtained.	V group present may be Ba ²⁺ . Sr ²⁺ or Ca ²⁺ .
	add excess of NH ₄ OH and		Ba St Of Ca
	saturated solution of (NH ₄) ₂ CO ₃ .		
	Dissolve the white ppt in hot	1 2	
	CH3COOH and divide it in to three		
8	parts.		
	To part I add K2CrO4 solution.	No ppt	Ba ²⁺ absent.
			Sr2+ confirmed.
(i)	To Part II add (NIL): SO, solution	A white ppt is obtained.	Sr contirmed.
(i) (ii)	To Part II add (NH _d) ₂ SO ₄ solution Dry test – Perform flame test with	A white ppt is obtained. Consistent crimson fed	Sr ²⁺ confirmed.

Result : - chloride (di) and strontium (Sr2+) radicals are present in the given salt.

Exercise: Analyze the given mixture for one acid and one basic radical by dry and wet tests.

S.N	EXPERIMENT	OBSERVATION	INFERENCE
1	Test for acid radical Salt + dil H ₂ SO ₄ and heat.	Brisk effervesce with	Dilute acid group is
		evolution of colourless and pungent smell like burning sulpher gas.	present may be SO32-
2	Pass the above gas in time water.	Lime water turn milky.	SO ₁ ² confirmed.
3	Pass more of the gas in milky solution.	Milkyness disappeares.	SO ₃ ² · confirmed.
4	Bring acidity K ₂ Cr ₂ O ₇ clipped filter paper on the mouth of the test tube.	Filter paper turn into green.	SO ₃ ² confirmed.
	Test for Basic Radical		
1.	Salt + NaOH solution & Heat.	No smell of NH ₃	Zero group absent.
2	Original solution + dil. HCl	No ppt.	I group absent.
3	Pass H ₂ S gas into the above solution.	No ppt.	Il group absent.
4	Boil the above solution to remove H ₂ S gas completely. Test it by a piece of filter paper moistened with (CH ₂ COO) ₂ Pb.	Filter paper does not turn black.	H ₂ S is removed completely.
5	Now boil the above solution with 2 drops of conc. HNO ₃ add solid NH ₄ Cl and then NH ₄ OH in excess after cooling.	No ppt	III group absent.
6	Pass H ₂ S gas in the above solution.	Ne ppt	IV group absent.
7	Boil off H ₂ S from the above solution and concentrate it. Now add excess of NH ₄ OH and saturated solution of (NH ₄) ₂ CO ₃ .	A white ppt is obtained.	V group present. May be Ba ²⁺ , Sr ²⁺ & Ca ²⁺
8	Dissolve the white ppt in hot CH ₃ COOH and divide it in to three parts.		14
(i)	To part I + KrCro₄ solution.	No ppt.	Ba ²⁺ absent.
(ii)	To Part II + (NH ₄) So ₄ solution.	No ppt.	Sr ²⁺ absent.
(iii)	To Part III + (NH4)2C2O4 solution.	White ppt.	Ca ²⁺ confirmed.
9.	Dry Test - Perform flame test.	Brick red flame.	Ca ²⁺ confirmed.

Result: - The given mixture contains

and calcium (Ca2+) radicals.

Sulphite (Szg. 2.)

Exercise: Analyse the given salt for one acid and one basic radical by dry and wet tests.

S.N	EXPERIMENT	OBSERVATION	INFERENCE
1	Tests for acid radicals Salt + dil H ₂ SO ₄ and heat.	Brick effervesence with the evolution of colour less and odourless gas.	Dilute acid group is present. May be Co ₃ ²
2	Confirmatory test – Pass the evolved gas in lime water.	Lime water turns milky.	CO ₃ ²⁻ Confirmed.
3	Pass more of the gas in milky solution.	Milkyness disappears.	CO ₃ ² · Confirmed.
	Test for Basic Radical		
1.	Salt + NaOH solution & Heat.	No smell of NH ₃	Zero group absent.
2	Original solution + dil. HCl	No ppt .	I group absent.
2	Pass H ₂ S gas into the above solution.	No ppi	Il group absent.
4	Boil the above solution to remove H ₂ S gas completely. Test it by a piece of filter paper moistened with (CH ₃ COO) ₂ Pb.	Filter paper does not turn black.	H ₂ S is removed completely.
5	Now boil the above solution with 2 drops of conc. HNO ₃ add solid NH ₄ Cl and then NH ₄ OH in excess after cooling.	No ppt	III group absent.
6	Pass H ₂ S gas in the above solution.	No ppt	IV group is absent.
7	Boil off H ₂ S from the above solution and concentrate it now add excess of NH ₄ OH and (NH ₄) ₂ CO ₃	No ppt	V group absent.
8	To the solution obtained above add disodium hydrogen	White ppt is formed. Which is soluble in dil.	VI group present may be Mg ²⁺
9	phosphate. (Na ₂ HPO ₄) Solution of white ppt in dil. HCl + NaOH + Titan yellow. Dry test – Perform charcoal cavity test with Cobalt Nitrate.	Pinkish red ppt is obtained. Pink residue is left in the cavity.	Mg ²⁺ confirmed. Mg ²⁺ confirmed.

Result: - The given salt contains carbonate (CO32-) and Magnesium (Mg2+) radicals in it.